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Abstract

Rectangular shape object detection in color images is a critical step of many image recognition systems. However, there

are few reports on this matter. In this paper, we proposed a hierarchical approach, which combines a global contour-based

line segment detection algorithm and an Markov random field (MRF) model, to extract rectangular shape objects from

real color images. Firstly, we use an elaborate edge detection algorithm to obtain image edge map and accurate edge pixel

gradient information (magnitude and direction). Then line segments are extracted from the edge map and some

neighboring parallel segments are merged into a single line segment. Finally all segments lying on the boundary of

unknown rectangular shape objects are labeled via an MRF model built on line segments. Experimental results show that

our method is robust in locating multiple rectangular shape objects simultaneously with respect to different size,

orientation and color.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Object detection is a topic of great importance for
many recognition systems. Rectangular shape object
detection is one of the basic tasks of computer
vision and is especially important in some applica-
tions such as man-made object detection [1], which
frequently has shapes with rectangular edges, for
example some traffic signs and building roofs.

Some papers about the rectangular object detec-
tion from binary or grey-level images have been
published [2–5]. However, nowadays, color image
has definitely supplanted monochromatic or grey
e front matter r 2007 Elsevier B.V. All rights reserved
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information with increasing speed and decreasing
costs of computation. Color information permits a
more complete representation of images and a more
reliable segmentation of them. So extracting rectan-
gular shape objects from color images, which may
contain multiple complex objects, is becoming a
significant operation in the application of computer
vision.

In this paper, a novel rectangular shape object
detection method targeted towards being robust
with respect to diverse kinds of rectangular object
appearances, including object size, orientation, and
color, is presented. The method is significantly
different from conventional rectangular object
detection techniques, which directly estimate the
five parameters (center location (two parameters),
.
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length, width and orientation) of an arbitrarily
oriented rectangle to extract rectangular objects
with high time complexity and space requirement.
The basic idea of our algorithm is to use an MRF
model built on detected line segments in image edge
map to label certain line segments, which lie on the
boundary of rectangular objects. First, with an
elaborate edge detection algorithm based on differ-
ential geometry, we obtain image edge map and
precise gradient direction of each edge pixel. Second
we link edge pixels with similar orientation into
straight line segments and group neighboring
parallel line segments into a single line segment.
Eventually, an MRF model is built to label line
segments belonging to different rectangular shape
objects. The randomness is used to model the
uncertainty in the assignment of the labels.

The rest of this paper is organized as follows.
Section 2 gives an overview of previous work on
shape-based object detection. Section 3 describes
our edge detection algorithm. The line segment
detection and combination algorithm is discussed in
Section 4. Section 5 discusses our MRF model and
its application to rectangle detection. Experimental
results are explained in Section 6. Conclusion
remarks are given in last section.

2. Related work

Shape-based object detection is one of the
difficult tasks in computer vision systems. Although
it has been studied for dozens of years, an accurate
and high performance approach is still a great
challenge today.

Many methods have been previously used to
extract geometric primitives from image data. The
most popular methods are variations on the Hough
transform (HT) [6]. Conventional HT is very time-
consuming and expensive in memory, especially for
rectangle detection, which has five unknown para-
meters to be estimated. The randomized Hough
transform (RHT) [7] was originally designed mainly
for analytical curve extraction, such as line, circle,
etc. Its application to direct rectangle detection is
still a time-consuming process. Another great
problem affecting the RHT is that its performance
is poor when the image is noisy or complex.

In [8], a rectangle detection algorithm based on
line primitive is proposed to extract fixed orientation
rectangles which are composed of horizontal and
vertical lines in binary images. Zhu et al. [9] propose
rectangular HT to detect rectangular particles in
cry-electron microscopy images. But this algorithm
can only detect rectangles with the same dimensions
in the image and the dimension of rectangle must be
known. Jung et al. [2] propose a windowed HT
algorithm to detect rectangles from grey-level images.
But this algorithm is also time-consuming and may
include many false alarms in detection result.

Roth et al. [10] proved that the shape detection
problem can be formulated in terms of an optimiza-
tion problem, so the genetic algorithm is proposed
to solve this problem [11,12]. However, it is only
applied to binary image and its optimization process
is time-consuming. Moreover, it does not go far
enough to detect multi-object simultaneously.
3. Image edge extraction

It is necessary for our algorithm to detect image
edges in a preprocessing step, even though the edge
detection is not the focus of this paper.

First, we use an accurate isotropic edge detector
based on multi-dimensional gradient analysis to
obtain edge information, which tends to be robust
under changes in illumination or related camera
parameters and greatly reduces the detection time
complexity. Because the edge detector we adopted is
different from most existing isotropic edge detec-
tors, which cannot provide accurate edge direction
information [13], basic ideas are presented below to
illustrate the edge detector. The idea about the edge
detector has been described in [14].
3.1. Edge detector

Given a color image, the difference vector DV in
rgb color space induced by moving an infinitesimal
step in the image plane in the direction fdx;dyg is:
DV ¼ ðdx dyÞJT

c ,

Jc ¼

qrqx qr=qy

qg=qx qg=qy

qb=qx qb=qy

2
64

3
75,

where Jc is the Jacobian matrix of the image, rx, ry,
gx, gy, bx and by, are the six first order derivatives of
the three color channels with respect to the two
coordinates x and y.

The Euclidean squared magnitude of DV is

DV2 ¼ ðdx dyÞMcðdx dyÞT,

where Mc ¼ JT
c Jc ¼

Mxx
Mxy

Mxy
Myy

h i
,
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Fig. 1. Pixel ði; jÞ gradient direction.
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Mxx ¼ ðrxÞ
2
þ ðgxÞ

2
þ ðbxÞ

2,

Mxy ¼ rxry þ gxgy þ bxby,

Myy ¼ ðryÞ
2
þ ðgyÞ

2
þ ðbyÞ

2

and DV2 is a measure of the rate of change of the
image in the direction of fdx;dyg. Maximizing this
magnitude is an eigenvalue problem. We can obtain
the magnitude extremum in the direction of the
eigenvector of the matrix Mc and the extremum
value is the corresponding eigenvalue. The trace of
Mc, ððrxÞ

2
þ ðgxÞ

2
þ ðbxÞ

2
þ ðryÞ

2
þ ðgyÞ

2
þ ðbyÞ

2
Þ is

evaluated as a measure of the joint channel gradient
intensity.

The larger eigenvalue of Mc is

V ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMxx þMyyÞ

2
� 4� ðMxx �Myy �M2

xyÞ

q
þMxx þMyyÞ=2 ð1Þ

and its corresponding eigenvector is
fMxy;V �Mxxg. The gradient direction angle is
defined by eigenvector:

y ¼ arctan
V �Mxx

Mxy

� �
. (2)

The square root of the larger eigenvalue and its
corresponding eigenvector direction are the equiva-
lents of the gradient magnitude and gradient
direction at any given point. So we can get precise
gradient magnitude and direction of each pixel ði; jÞ
by computing corresponding eigenvalue V ði; jÞ and
eigenvector direction yði; jÞ with Eqs. (1) and (2).

3.2. Edge detection algorithm

Based on the detector [14] in previous section, we
exploit image pixel gradient direction, magnitude,
spatial information and region property to obtain
image edge. A selection-and-verification scheme is
proposed to finish this task. First we will select edge
pixel candidates according to image pixel eigenvec-
tor direction and eigenvalue magnitude. Then
spatial information and region-based analysis are
integrated to verify all candidate edge pixels.

(1) Candidate edge pixel selection: First of all, the
matrix Mc is computed for each pixel on the image
and we will get a series of eigenvalues V and
eigenvectors E for all pixels.

Edge pixels are those points with local maximum
gradient magnitude in their gradient direction. So a
pixel is kept as a candidate edge pixel only if it has a
larger gradient magnitude than that of its neighbor
located in the direction closest to its gradient
direction, i.e., the eigenvalue of an edge pixel must
be greater than that of both two neighboring points,
which are closest to its eigenvector direction. We
illustrate our idea more clearly with Fig. 1. The
arrow line shows the gradient direction of an image
pixel ði; jÞ corresponding to its eigenvector direction.
Because the gradient direction is closest to pixel ði þ
1; j � 1Þ and pixel ði � 1; j þ 1Þ, the pixel ði; jÞ will be
classified as candidate to be edge pixel only if
V ði; jÞ4V ði þ 1; j � 1Þ and V ði; jÞ4V ði � 1; j þ 1Þ.
Otherwise, it is classified as a non-edge pixel.

(2) Edge pixel verification: Furthermore, to avoid
detecting false edge pixels, such as noise points,
following two operations incorporating spatial
information and region-based analysis are per-
formed.
�
 First if a potential edge point has no potential
edge point in its eight neighboring points, it must
be treated as noise and removed from edge point
collection.

�
 Second we also noticed that the gradient
magnitude variance of two adjacent points in
the same region is not apparent. So if the
corresponding eigenvalue difference between a
candidate edge pixel and its eight neighboring
labeled edge pixels is always very large, the
candidate edge pixel will not be selected as an
edge pixel. Inequality (3) is defined to evaluate
the difference:

XNumði;jÞ�1

0

jV ði; jÞ � V ði þ p; j þ qÞj

 

�
XNumði;jÞ�1

0

V ði þ p; j þ qÞ

!
40. ð3Þ

Given a candidate edge pixel ði; jÞ, Numði; jÞ is
the count of its neighboring labeled edge pixel



ARTICLE IN PRESS
Y. Liu et al. / Signal Processing 87 (2007) 2649–26582652
ði þ p; j þ qÞ and Numði; jÞ value could be 1; . . . ; 7,
with p and q 2 f�1; 0; 1g. If (3) is true, the pixel ði; jÞ
will be labeled as a non-edge point.

After removing false edge points, we can provide
more accurate edge information for next line
segment detection and reduce the number of
subsequent searches.

4. Line segment detection and combination

After we get the edge map of a color image, we
need to link neighboring edge pixels with similar
orientation to a set of straight line segments by
tracing the pixels on the edge to prepare data for
later rectangle detection. Due to effect of noise and
illumination, the edges of some objects are incom-
plete and do not make up one continuous line. So it
is necessary to merge some neighboring parallel line
segments into a single line segment.

4.1. Line segment detection algorithm

In this stage, we group neighboring edge pixels
with similar orientation into straight line segments.

Because edge pixels are an unordered list of
points in two dimensional Cartesian space, like HT

we first map each pixel ðx; yÞ into a curve r ¼
x cos Wþ y sin W in r2W plane, where r is the normal
distance of the desired line from the origin and W is
the angle that the normal to the line makes with
positive x-axis.

Although HT can find infinite straight lines on
which the image edges lie, a straight line in an image
has two ends and HT [16] does not find end-points.
So we will store the two end pixel coordinates
corresponding to a point (r0;W0) in r2W plane,
which can be mapped into a straight line r0 ¼
x cos W0 þ y sin W0 in x2y plane. Furthermore, edge
pixel orientation obtained in previous stage can
greatly reduce computation burden because each
edge pixel only votes for one bin in the accumulator
array with W fixed by the gradient direction.

To fit a straight line to a set of data points, we
quantize r and W with dr ¼ 1 and dW ¼ 2, which are
sufficiently accurate for line segment detection task.
Then following steps are performed to detect line
segments from the edge map.
�
 Scan the image from left to right and from top to
bottom.

�
 For each edge pixel ði; jÞ, we compute its polar

coordinate rði; jÞ ¼ i � cos yði; jÞ þ j � sin yði; jÞ
in r2W plane, where yði; jÞ is its gradient direction
angle. After this, we will group ði; jÞ according to
following two cases:
� If no line segment lying along the perpendi-
cular direction defined by yði; jÞ is connected
with ði; jÞ, then a new line segment is generated
with its start and end labeled with ði; jÞ, else
� the starting and ending pixels of the line
segment, which has the same orientation and
connects with ði; jÞ, are updated by computing
the Manhattan distance (The Manhattan
distance between two points is measured along
axes at right angles. Given two pixels
p1ðx1; y1Þ and p2ðx2; y2Þ, the Manhattan
distance between p1 and p2 is jx1� x2jþ
jy1� y2j.) between two ends and ði; jÞ.
After completing the scan of the whole image, all
detected line segments are output to the next step
for further processing.

4.2. Line segment combination

Due to effect of noise or illumination variation,
line segments detected in former procedure may be
highly fragmented and a combination process is
necessary. Moreover, line segment combination will
reduce the time complexity of later rectangle
boundary detection process. Therefore, we merge
some straight line segments into a single segment,
whose length and orientation are derived from the
contributing segments, according to several percep-
tual grouping criteria.
�
 First, the merged line segments must have the
same orientations.

�
 Second, the distance among line segments should

be very small (within 2 pixel distance).

�
 Third, parallel line segments should not overlap a

significant portion when they are projected in the
direction perpendicular to the line.

With criteria described above, some neighboring
parallel segments are merged into a single segment.
If a line segment is longer than the minimum length,
it will be added into the output list to prepare data
for subsequent rectangle detection.

5. Rectangle detection algorithm

After obtaining all line segments in image edge
map, we classify certain line segments, which are
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boundaries of different rectangular shape objects
existing in image, through an MRF model.

MRF [15] has been demonstrated to be success-
fully applied to many image processing tasks.
Because the probability of a line segment being
one rectangle side mainly depends on that of its
neighbors, we can build an MRF model to label line
segments being rectangle sides or not. Detailed
information about our MRF model is discussed
below.

Let L ¼ fl1; l2; . . . ; lng be the line segment set we
obtained in previous process. The set of sites d ¼

f1; 2; . . . ; ng indexes L. Let F ¼ fF 1;F 2; . . . ;Fng be a
family of random variables, in which each random
variable F i takes its value from 0 to 1 and indicates
whether a line segment li lies on the boundary of a
rectangular shape object or not. When F i ¼ 1, li is
regarded as one rectangle side.

Because neighborhood selection is an important
issue in MRF, we will first introduce the neighbor-
hood system used in our algorithm.

5.1. Neighborhood system

Let NðliÞ be the set of all line segments in L that
are neighbors of li such that lieNðliÞ and if
lj 2 NðliÞ, then li 2 NðljÞ.

In our algorithm, one line segment lj will be
regarded as one neighborhood of li only if it meets
the following three requirements:
�
 First, lj must be parallel or perpendicular to li,
which is determined by the prominent geometry
feature of rectangles. Let Hði; jÞ be a measure of
spatial relations between li and lj. Hði; jÞ ¼ 1
indicates that li and lj are perpendicular to each
other while Hði; jÞ ¼ 0 indicates that li and lj are
parallel to each other.

�

Fig. 2. Illustration of distance and overlapping area among line

segments.
Second, the distance Dði; jÞ between li and lj

should not be too large or be very small.
If Hði; jÞ ¼ 0, Dði; jÞ equals to the length of the

segment perpendicular to one line from one point
lying on another line. Then Dði; jÞ should be
smaller than the maximum possible rectangle size
MRS (the largest value of MRS can be image
size) and greater than the minimum possible
rectangle size MIS in image, i.e., Dði; jÞoMRS
and Dði; jÞ4MIS.

If Hði; jÞ ¼ 1, Dði; jÞ equals to the minimum
distance between each end of one line segment
and another line segment. In this case, Dði; jÞ
should be smaller than the half length of each line
segment, i.e., Dði; jÞominðLENi;LENjÞ=2, where
LENi is the length of a line segment li.

In Fig. 2, l1 and l2 are one parallel line pair and
perpendicular to l3. D(1,2) is the distance
between l1 and l2, D(2,3) is the distance between
l2 and l3.

�
 Third, if li and lj are parallel to each other, they

should overlap a significant portion when pro-
jected in direction perpendicular to the line.
When the amount of overlap between two line
segments exceeds 60% of each line length, one
line segment will have chance to be a neighbor to
the other one. We can illustrate our idea more
clearly with Fig. 2.

In Fig. 2, we project l1 onto l2 yielding segment
AB. Only if jABj4ð0:6�maxðLEN1;LEN2ÞÞ,
then l2 will be accepted as one neighbor of l1.

With the neighborhood system defined above, the
field F can be assumed to be an MRF with its local
characteristics.

For

i 2 d; PðFijF j ; j 2 d; jaiÞ ¼ PðF ijFj ; j 2 NðliÞÞ.

5.2. Labeling line segments

Let f ¼ ff 1; f 2; . . . ; f ng be a configuration of F,
i.e., fF1 ¼ f 1; . . . ;F n ¼ f ng and N ¼ fNðliÞj8i 2 dg

be the collections of line segments neighboring to
one line segment. Then we can calculate the
posterior probability following Gibbs distribution
as follows:

PðF ¼ f jLÞ ¼ Z�1 exp½�Eðf Þ=T �, (4)

where T is the temperature which is assumed
to be one unless, otherwise stated, Z is the normal-
ization factor and Eðf Þ is the posterior energy
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function.

Eðf Þ ¼ Uðf Þ=T þUðljf Þ,

where Uðf Þ and Uðljf Þ are the prior energy and the
likelihood energy, respectively.

Now, we can define the rectangle side extraction
as the following optimization problem.

For a given L, arg max Pðf ijliÞ for each li, which
is also equivalently found by

arg min Eðf Þ.

Minimize the energy function will maximize the
probability defined by Eq. (4).

Maximizing the probability defined by Eq. (4) will
give the maximum posterior estimate of potential
rectangles’ sides in image edge map. The energy
function E of our model is minimized while each f i

is converged to either 0 or 1. E consists of the
following four terms:

E1 ¼ a1
Xn

i¼1

X
j2NðliÞ

f if jDði; jÞ, (5)

E2 ¼ a2
Xn

i¼1

f i

LENi

�AVGLEN

� �
, (6)

E3 ¼ �a3
Xn

i¼1

ðf i ln f i þ ð1� f iÞ lnð1� f iÞÞ, (7)

E4 ¼ a4
Xn

i¼1

X
j2NðliÞ

f if j Hði; jÞ

�

� min
k2ðNðliÞ\Nðlj ÞÞ

Dðk; jÞ þDðk; iÞ

f k

þ ð1�Hði; jÞÞ

� min
k2ðNðliÞ\Nðlj ÞÞ

Dðk; jÞ þDðk; iÞ

f kHðk; jÞ

)
, ð8Þ

where a1, a2, a3 and a4 are positive constants, which
control the contributions of the individual energy
term to the value of the energy function. AVGLEN
is the average length of line segment set L:

AVGLEN ¼
1

n

Xn

i¼1

LENi.

E1 supports grouping of line segments that are close
to each other. E2 favors long line segments. E3 is the
entropy of the configuration ff ig hence pushes
the ff ig to either 0 or 1. E4 favors two neighboring
line segments, both of which are close to one of their
mutual neighbor line segments.

The ff ig are all initialized to 0.5 and the energy is
gradually reduced by using a gradient descent
algorithm with a learning rate scheduling scheme:

ff igtþ1 ¼ ff igt � ZtrE, (9)

Ztþ1 ¼ Zt � b, (10)

where Z is a positive step-size parameter, which
influences convergence rate and final labeling result,
b is a small constant, which makes the step size
linearly decreased at each iteration, and rE is the
gradient of E.

Upon minimizing the energy, we can select certain
line segments, which are boundary segments of
unknown rectangular shape objects in image, with
its label parameter f i �1 from L. Then four sides of
the same rectangle will be grouped together by the
spatial information and geometrical relations
among line segments, which can be obtained from
our neighborhood system.

Since one rectangle is uniquely determined by
four linked line segments, we built our neighbor-
hood system, which fully exploits this fact. Given
two line segments, only when they are close to each
other and parallel or perpendicular to each other,
they have the possibility to become neighborhoods.

After we labeled those line segments, which lie on
the boundaries of unknown rectangular objects, we
intend to search their neighboring line segments to
form integrated rectangles. Given one line segment
l, which is labeled as one side of unknown
rectangular objects, we will select three additional
labeled line segments, in which one line segment is
parallel to l and two others are perpendicular to l,
from its neighborhoods to form a rectangle.
Furthermore, those three labeled line segments must
be the neighborhoods of each other.

With the scheme described above, we can locate
rectangular objects in color images by grouping four
labeled line segments together.
6. Experimental results

In order to evaluate the actual performance of
our proposed algorithm, we implemented the
algorithm in Cþþ language under Windows-XP
on an EPSON Endeavor MT7000 PC equipped with
Intel PIV 2.4GHz processor and 1GB RAM.

Our image database contains 513 real color
images which include variant rectangular shape
objects. The resolution of test images varies from
73� 42 to 3072� 2048 pixels. Rectangular object
appearance varies with different size, orientation



.

ARTICLE IN PRESS
Y. Liu et al. / Signal Processing 87 (2007) 2649–2658 2655
and colors. The size of rectangular objects in images
ranges from 7 to 1605 pixels.

6.1. Choice of parameters

During the experimentation, considering tradeoff
between cost and performance, we set different values
for parameter MRS (maximum rectangle size), MIS
(minimum rectangle size) and Z0 (initial learning rate),
which makes our algorithm more flexible.

Both MRS and MIS influence the time complex-
ity and detection accuracy of our algorithm. So we
Fig. 3. Initial color image.

½False alarm rate�

¼
number of false alarms

number of detected true rectangular objectsþ number of false alarms
.

change both parameters adaptively according to
variant image size such that

MRS ¼ maxðimage width, image heightÞ,

MIS ¼ maxð5;minðimage width, image heightÞ=

100Þ,

which can provide satisfactory accuracy in most
cases.

Z0 is another important parameter of our
rectangle detection algorithm. If Z0 is too small,
our algorithm will take a long time to converge. If
Z0 is too large, our algorithm may oscillate and the
detection result becomes unstable. So Z0 is set to
different value according to variant image complex-
ity such that

Z0 ¼
number of line segments in image

(image width)� (image height)
.

In addition, the setting of the four coefficients: a1,
a2, a3 and a4 affects the efficiency and accuracy of
our detection result. So we have done a large
amount of experiments to figure out which para-
meter setting is the best one for our algorithm. We
examined different settings of those four parameters
with 100 images selected from 513 test images,
which have variant complexity. From experimental
results we discovered that the following relationship
is best suited for our algorithm:

a2 ¼ a1=5; a3 ¼ 2� a1; a4 ¼ 2:5� a1.
6.2. Detection evaluation

For measuring accuracy, false alarm rate and
detection rate are calculated to evaluate our
algorithm performance. Detection rate is defined
as follows:

½Detection rate�

¼
number of detected true rectangular objects

total number of rectangular objects in images

False alarm rate is evaluated as follows:
Due to limited space, only one test image with 770�
889 pixels is illustrated in Fig. 3 (note that the image
has been shrunk). Fig. 4 shows the image edge map
obtained by using our edge extraction algorithm
discussed in Section 3, which has 86,116 edge pixels.
The precise gradient direction of each edge pixel
computed from Eq. (2) is represented with short
green line in Fig. 5. In Fig. 6, we depict all line
segments detected from the image edge map with
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Fig. 4. Edge image of the tested image.

Fig. 5. Eigenvector direction map.

Fig. 6. Line segment detection result.

Fig. 7. Rectangular object detection result with MRS ¼ 889,

MIS ¼ 9 and Z0 ¼ 0:0132.

Y. Liu et al. / Signal Processing 87 (2007) 2649–26582656
red line segments, whose number is 9055. Then
rectangular shape objects are detected via an MRF
model built on line segments and the detection
result is shown in Fig. 7, where blue line segments
represent the rectangular shape object boundary. As
it can be noticed, all rectangular shape objects
contained in Fig. 3 were successfully detected (the
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parameters used wereMRS ¼ 889, MIS ¼ 9 and
d0 ¼ 0:0132). The total processing time of this
image is 5.890 s. The edge detection process takes
only 0.515 s and the line segment detection and
combination process consumes 0.859 s. More than
75% of the total execution time is consumed by
rectangle detection task.

Compared with most previous rectangle detection
algorithms, like [2,9], which directly estimate the five
parameters of an arbitrarily oriented rectangle with
high time complexity and space requirement, our
algorithm explores the merit of MRF to allow a
global optimization problem to be simplified and
solved locally, whereby the computation cost is
minimized.

Table 1 summarizes the computation time of our
algorithm and RHT on 513 real color images, from
which we can see that our algorithm is much more
efficient than RHT. The detection result achieved by
our algorithm and RHT is summarized in Table 2,
which shows the evidence that our algorithm has
much higher detection rate and lower false alarm
rate than RHT. To make the comparison more
Table 1

Average execution time (s) of our algorithm and RHT

NS NN NR TE (s) TL (s) TR (s) TH (s)

o380� 330 53 42 0.051 0.092 0.719 8.329

o650� 480 78 97 0.155 0.219 3.562 31.728

o960� 1280 130 396 0.422 0.897 6.891 70.129

o1786� 1680 220 364 1.376 1.953 14.187 201.325

o3072� 2048 32 36 3.756 5.382 35.012 519.431

NS: image size (pixels); NN: number of images; NR: number of

rectangular objects in images; TE: average execution time of our

edge extraction; TL: average execution time of our line segment

detection; TR: average execution time of our rectangle detection;

TH: average execution time of rectangle detection by using RHT,

which is the average of 15 trials.

Table 2

Rectangular object detection result of our algorithm and RHT

NS NN False alarm rate

Proposed (%)

o380� 330 53 4.7

o650� 480 78 7.0

o960� 1280 130 5.9

o1786� 1680 220 5.2

o3072� 2048 32 12.5
impressive, we depict the detection result of Table 2
with one graph (Fig. 8).

But we also noticed that one problem associated
with our algorithm is that when rectangular shape
object boundary in color images is blurred with cast
shadowed by other objects, it is difficult to get
precise edge information and locate such object
accurately. So we hope to integrate color constancy
technique to our algorithm to make the rectangular
shape object detection approach more robust in
future.

7. Conclusions

In this paper, we regard the rectangle detection
task as an optimization problem and propose an
MRF model-based algorithm to extract multiple
rectangular shape objects simultaneously from color
images.

The resulting algorithm has demonstrated high
accuracy and efficiency with real color images
containing multiple rectangular shape objects with
different size, orientation and color. Furthermore,
Detection rate

RHT (%) Proposed (%) RHT (%)

34.8 97.6 70.4

47.2 95.9 61.2

32.8 96.2 69.4

37.0 95.6 71.3

46.1 97.2 60.7

Fig. 8. Detection result.
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with different selection of neighborhood system, our
algorithm can also be extended to detect some
objects with low-degree polynomial curve bound-
ary, such as parallelogram shape objects.
References

[1] S. Noronha, R. Nevatia, Detection and modeling of

buildings from multiple aerial images, IEEE Trans. Pattern

Anal. Machine Intell. 23 (5) (2001) 501–518.

[2] C.R. Jung, R. Schramm, Rectangle detection based on a

windowed Hough transform, in: Proceedings of the 17th

Brazilian Symposium on Computer Graphics and Image

Processing, October 2004, pp. 113–120.

[3] C. Herley, Recursive method to extract rectangular

objects from scans, in: Proceedings of the International

Conference on Image Processing, vol. 3, September 2003,

pp. 989–992.

[4] L. Hopwood, W. Miller, A. George, Parallel implementation

of the Hough transform for the extraction of rectangular

objects, in: Bringing Together Education, Science and

Technology, Proceedings of the IEEE Southeastcon ’96,

April 1996, pp. 261–264.

[5] C. Lin, R. Nevatia, Building detection and description from

a single intensity image, Comput. Vision Image Under-

standing 72 (2) (1998) 101–121.

[6] J. lllingworth, J. Kittler, A survey of the Hough trans-

form, Comput. Vision Graph. Image Process. 44 (1) (1988)

87–116.
[7] H. Kalviainen, P. Hirvonen, An extension to the randomized

Hough transform exploiting connectivity, Pattern Recogni-

tion Lett. (1997) 77–85.

[8] X. Li, D. Doermann, W.-G. Oh, W. Gao, A robust method

for unknown forms analysis, in: Proceedings of the Fifth

International Conference on Document Analysis and

Recognition, September 1999, pp. 531–534.

[9] Y. Zhu, B. Carragher, F. Mouche, C. Potter, Automatic

particle detection through efficient hough transforms, IEEE

Trans. Med. Imaging 22 (9) (2003) 1053–1062.

[10] G. Roth, M.D. Levine, Extracting geometric primitives,

Comput. Vision Graph. Image Process. Image Understand-

ing 58 (1) (1993) 1–22.

[11] E. Lutton, P. Martinez, A genetic algorithm for the detection

of 2D geometric primitive in images, in: Proceedings of the

12th International Conference on Pattern Recognition, vol.

1, October 1994, pp. 526–528.

[12] G. Roth, M.D. Levine, Geometric primitive extraction using

a genetic algorithm, IEEE Trans. Pattern Anal. Machine

Intell. 16 (9) (1994) 901–905.

[13] J. Fan, D.K.Y. Yau, A.K. Elmagarmid, W.G. Aref,

Automatic image segmentation by integrating color-edge

extraction and seeded region growing, IEEE Trans. Image

Process. 10 (10) (2001) 1454–1466.

[14] H.-C. Lee, D.R. Cok, Detecting boundaries in a vector field,

IEEE Trans. Signal Process. 39 (5) (1991) 1181–1194.

[15] X. Wang, H. Wang, Evolutionary optimization with

Markov random field prior, IEEE Trans. Evol. Comput. 8

(6) (2004) 567–579.

[16] P.R. Thrift, S.M. Dunn, Approximating point-set images by

line segments using a variation of the Hough transform,

Comput. Vision Graph. Image Process. 21 (1983) 383–394.


	An MRF model-based approach to the detection of rectangular shape objects in color images
	Introduction
	Related work
	Image edge extraction
	Edge detector
	Edge detection algorithm

	Line segment detection and combination
	Line segment detection algorithm
	Line segment combination

	Rectangle detection algorithm
	Neighborhood system
	Labeling line segments

	Experimental results
	Choice of parameters
	Detection evaluation

	Conclusions
	References


