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Abstract: 
A fast SVM training algorithm is proposed in this paper. 

By integrating kernel caching, shrinking and using second 
order information, a fast Quadric Programming(QP) trainer is 
achieved. For traditional two-class SVM, the generalized error 
bound derived from Statistical Learning Theory(SLT) is 
computed and minimized for the selection of parameters, with 
the Zoutendijk(ZQP) idea and parallel method to speed up the 
process. For one-class SVM, a compression criterion is 
proposed to search the best kernel width automatically. 
Experiments demonstrate that the proposed method is 
significantly faster than LibSVM and requires less support 
vectors to achieve good classification accuracy. 
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1. Introduction 

Support Vector Machine(SVM) has become one of the 
most popular classification method in Machine Learning 
area in recent years. The basic concepts and theory of SVM 
has been described in many previous papers(e.g. 
[1][2][3][4]). Three major problems involved in practical 
usage of SVM training are speed, generalized error and free 
parameter optimization. Due to the endeavor of researchers 
in recent years, several methods are developed to speed up 
the SVM training in every aspect. Such as Sequential 
Minimal Optimization(SMO)[5], Kernel Caching[6], 
Shrinking[7] and using second order information[8]. In this 
paper, Multi-Operation Mixing is proposed as an effective 
integration of all of these technologies to design a fast 
Quadric Programming(QP) trainer for SVM. 

Free parameter optimization for SVM is less 
investigated in previous works[9], and most of the existed 
method are based on a search to minimize the error estimated 
by cross-validation or leave-one-out method. There are two 
disadvantages of such methods. On one hand, time 
consumption is great due to the repeating training. On the 
other hand, there is uncertainty with the estimated error 

which is relied on, and the chances, that the free parameter 
which is found with a minimum estimated error has large 
actual error, will be increasing when searching in free 
parameter space.  

A deterministic criterion which can be calculated 
directly is needed to overcome these disadvantages. In 
two-class situation, the upper bound of generalized error 
derived from SLT(Statistical Learning Theory) [2] is the 
obvious choice. In one-class situation, which is less 
investigated, a compression criterion is proposed in this 
paper, which are deterministic and fast to be calculated.  

The search procedure is also important due to the 
criterion function always has some local minimal. An 
exhaustive grid search is proposed for the sake of integrating 
the Zoutendijk Quadric Programming(ZQP) idea[10] and 
parallel method to mitigate the time consumption and 
guaranteeing the optimum. Also, for the precision required 
in free parameter optimization is always low, large search 
step is set to make the searching fast.  

This paper is organized as follows: In Section 2, the 
proposed fast QP trainer for SVM is described. In Section 3, 
the suggested criterion is introduced and the method to 
determine training parameter is described. In Section 4, the 
proposed search algorithm for free parameter optimization is 
presented. In Section 5, experiments are carried out to show 
the effectiveness of the proposed method. Conclusion and 
discussion are made in Section 6.  

2. A new quadric programming trainer 

The idea of Support Vector Machine is to separate the 
training samples by a hyperplane with maximal margin. 
Actually, finding such a hyperplane is a Quadric 
Programming(QP) problem, so it is called QP trainer. The 
basic formulation of this quadric problem has been 
introduced in previous papers(e.g. [11]) and will be omitted 
in the paper. We just adopt C-SVM form in two-class case 
and OC-SVM[11][12] form in one-class case to introduce 
our algorithm. 
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Decomposition[13] is an important idea in QP, which 
divides the whole problem into a sequence of subproblems, 
and SMO[5] is the typical and most efficient one. The 
success of decomposition may due to the fact that the 
subproblem can be solved efficiently. And, kernel 
calculation is the main consumption in the whole training 
time. Caching the kernel is an effective way to speed up the 
algorithm.  

In this paper, a two-step decomposition framework [7] 
is used to facilitate the maximal re-usage of kernel caching 
in the first step and the embedding of SMO in the second 
step. A new method, Multi-Operation Mixing(MOM), is 
proposed to make a smooth and fast integration of Kernel 
Caching, Shrinking and SMO. The framework of MOM 
training procedure is illustrated in figure 1.  

The popular Least Recent Use(LRU) caching policy 
seems the most frequently used method for caching. 
Unfortunately, there is deficiency of LRU in SVM[6]. The 
Matrix Kernel Cache(MKC)[7] technology is employed to 
solve the deficiency of LRU. By the way of MKC, the first 
decomposition step is put on the whole problem, and the 
kernel of each sample pair in the subproblem is cached. It is 
expected that more support-vector samples are in the matrix 
kernel cache so that the cache can be reused effectively. 
Obviously, larger cache means more kernel re-usage. 

We think that the samples in cache represent the scale 
of subproblem, and the subproblem should be gradually 
changed, or, gradually selected to smooth the algorithm in 
believing that smoothness brings fast convergence.  

Before introducing the operation of gradually changing 
the subproblem, we first describe the data structure of 
caching. The samples in cache are organized as a 
bidirectional list with a head node and a tail node, for 
convenience of delisting. Also, there are two queues with 
FIFO(First In First Out) property to deal with samples 
outside the cache. One is called unknown-queue, which 
contains the samples never cached and is initially set as the 
all the sample with arbitrary order. The other is called 
active-queue, which is used to contain samples when cache 
reaches its memory limit. When we say that caching a 
sample, it means that first the sample dequeues, and then it is 
added to the tail of cache list, and finally the kernel cache is 
updated. If the cache is full, it will delist the head of cache 
list and push it to active-queue to get a place. So, we can 
cache one sample either from unknown-queue or from 
active-queue to change the subproblem gradually. 

In the second decomposition step, the subproblem in 
the kernel cache is solved by SMO, which further 
decompose the subproblem into the two-sample problem 
called working pair. The center problem of SMO is how to 
select the working pair. In our algorithm, an efficient 

approach is adopted, which uses second order information 
for working pair selection. Detail can be found in [8]. 

Also, shrinking technique, which eliminate the 
non-support-vector sample in advance to reduce the problem 
size and accelerate the convergence, is implemented by a 
shrink-queue, and a shrinking operation is inserted into 
every K SMO iterations(in our algorithm, we set K=100). In 
shrinking operation, we check the shrinking condition of 
every sample in kernel cache, delist the samples satisfied it, 
and push them into shrink-queue. Detail of shrinking 
condition can be found in [11]. 

 

 
Figure 1.  The framework of the proposed QP trainer 

 
Now, integration of QP training algorithm is made by 

the process of Multi-Operation Mixing(MOM) of four types 
of operation, which are called in mix order with particular 
proportion. As seen in Figure.1, the first operation is 
UnknownIn(), which is defined as caching one sample from 
unknown-queue. The second and third is ActiveIn() and 
ShrinkIn() respectively. The last one is SMOIter(), which is 
defined as one SMO iteration in kernel cache. The first three 
ones are considered as the subproblem selection in the first 
step decomposition, and the last one can be regard as the 
further decomposition and quadric optimization. 

In the process of MOM, the more times one type of 
operation is called the more proportion it has. The proportion 
control of these operations is a heuristic technique, which is 
got by the following consideration. First, it’s appropriate to 
make more UnknowIn() in early stage, so that the algorithm 
will quickly get the general information of enough sample to 
form a rough result. Second, when the active-queue became 
large, which means the SMO takes too much load, then the 
UnknowIn() should be slowed down. Third, we give 
ShrinkIn() a certain proportion to see whether the 
shrinked-sample should be back to cache. Forth, 
active-queue is an extension of cache, so we should spend 
equal CPU time on them, and their only difference is 
ActiveIn() is fastK times slower than SMOIter() as for kernel 
calculation. The algorithm is given in figure 2.  
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First calculate the following variables in order 
unknowrate = unknownsize / samplesize; 
alistrate = (cachelistsize + activequeuesize)  

/ (samplesize - unknownsize); 
unknownpart = unknowrate * (1 - alistrate); 
knownpart = 1 – unknownpart; 

Then, the proportion of four operations is given by: 
SMOIter() : ActiveIn() : ShrinkIn() : 

UnknownIn() 
=    (fastK* knownpart*5) : (knownpart*5)  

: knownpart : unknownpart 
 

Figure 2.  Proportion updating algorithm 
 

In Figure2, unknownsize denotes the length of 
unknown-queue, and samplesize denotes the total size of 
sample, and cachelistsize denotes the length of the cache list. 
fastK denotes the times by which SMOIter() is faster than 
other operations, since it can get the kernel value in cache 
without kernel calculation. Therefore, it is appropriate to let 
SMOIter() have larger proportion. Also, the proportion will 
be changed after each operation, so it need to be updated. As 
this method is a heuristic technique, it is updated every T 
operations to weaken its time consumption(we set T=100 in 
our experiments). 

In summary, the proposed fast SVM training algorithm 
is given in Figure 3. 

 
Step 1: Compute the proportion by algorithm shown in 
fig.2. 
Step 2: Repeat MOM T times (T=100 in our experiments) 
according to the proportion of four types of operations, 
and call them in random order.   
Step 3: repeat 1 and 2 until stopping condition is met.  

 
Figure 3.  The new fast SVM training algorithm 

3. Criterion calculation for automatically parameter 
determination  

Although in section 2 we have showed an efficient QP 
training algorithm, there are still free parameters needed to 
be tuned. In this paper, Gaussian kernel is considered, in 
which the width is the main free parameter. A criterion is 
needed to determine the goodness of a classifier with 
specific parameter. Search the parameters and minimize the 
error estimated by Cross Validation is frequently used. But 
that is slow for repeated training, and the error will rely on 

the selection of validation set in probability, that may cause a 
general over-fitting while searching the parameter space. 

The upper bound of generalized error derived from 
SLT(Statistical Learning Theory) is adopted as the criterion 
to determine the free parameters for C-SVM in our method. 
As a deterministic criterion, it won’t be affected by 
probability distribution. Therefore it should get a stable 
result with better generalization performance. There is just a 
tiny time consumption needed immediate after a single train. 
For one-class case, another criterion is proposed in section 
B. 

3.1. C-SVM  

In two-class case, the upper bound of generalized error 
is adopted as the criterion. Recall from STL, we can choose 
some η  ( 10 ≤≤η ) such that with probability η−1 , the 
following bound holds: 
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errorP  is the actual generalized error. empP  is the 
empirical error obtained in training samples. l  is the size of 
training samples. h  is the VC-dimension of the SVM 
classifier, which has the following bound. 
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R  is the minimal radius of the hypersphere, that 
contains all the support-vector samples. ∆  is the margin of 
the hyperplane. The hypersphere and hyperplane are both 
defined in feature space generated by Gaussian kernel, and 
can be calculated by geometry. Actually, computing R  is 
another QP, but this can be simplified by calculating the 
maximal distance D  among the support-vector samples, 
because the following holds. 

12

2

+
∆

≤⇒≤ DhDR           (3) 

To further speed up the process, a heuristic algorithm 
shown in Figure 4 is proposed to approximate the maximal 
distance D . 
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Initially, we defined the distance function ),( 21 xxD  in 
the feature space by kernel function. 

),(22),( 2121 xxKernelxxD −=  
And let k =1. 
Step1: for each sample, find j that maximize ),( kj xxD  
Step2: jk ←  
Step3:Repeat Step1 and Step2 N times 
Output: the final value of ),( kj xxD  

 
Figure 4.  An algorithm computing the maximal distance D 
 

There is also a tiny problem in choosing η . We just use 
(4) to simplify the formulation and make η  adaptively be 
smaller when lower lh /  rate.  

lh /2=η   or  
h
l2ln

4
ln −=η         (4) 

3.2. OC-SVM  

In one-class case, there are still two free parameters 
[12]. The idea of tuning them by a criterion is the same as 
two-class case. Before introducing the criterion proposed, 
we must recall the theory of OC-SVM. OC-SVM uses a 
hyperplane to separate training samples from origin with 
maximal margin. In another sense, the hyperplane generates 
a region that covers most of the training samples, while the 
region is of minimal volume. To do so, we can estimate the 
support of a high-dimensional distribution. It is expected to 
find a region that is small in volume and high in coverage 
rate.  

The first free parameter is used to control the fraction of 
outlier samples, which is not covered by the region. The 
selection of this is based on the consideration of the tradeoff 
between coverage rate and the volume of the region. This 
tradeoff should be decided by the algorithm user, so this 
parameter is set as an input value. 

The other free parameter is used to select different 
kernel. Gaussian kernel is adopted here, and this free 
parameter should become the width of the Gaussian kernel. 
The smaller the kernel width is, the stronger the region 
representation ability will be, but the more chances of 
over-fitting. So, the criterion proposed to solve the selection 
of the kernel width is the following. 
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Where N  is the training sample size. modP is the model 
pri-probability, and )( modPEntropy  is large when the model 
is complex. r  is just the first parameter used to control the 
fraction of outlier as an user input. SVrate  is the 
support-vector rate got from dividing the number of 
support-vector samples by the total size of samples, which 
can be look on as an empirical fraction of outlier that we 
actually got. So, ),( SVraterKLDistance  is the K-L distance 
of these two fractions. The nearer these two values are, the 
better the result we got, and the smaller the K-L distance will 
be, and vice versa.  

This criterion gets idea from information compression 
by Minimum Description Length(MDL) principle. 
Considering a new test sample set of size N, we need to store 
which are the outliers most efficiently. First, we must store 
the information that whether this set is under the distribution 
has been modeled, which causes )( modPEntropy  bits on 
average. When it is true with probability modP , we supposed 
to have a fraction r  of outliers but actually the fraction is 
SVrate , so extra bits are needed to represent this difference.  

The estimation of modP is a tough problem. In our 
method, the uniformed bias of the hyperplane, which is bias 
divided by the sum of alpha, is used as the modP  heuristically. 
It is worth to notice that a complex model is always with a 
small bias.  

∑
=

α
biasPmod                               (6) 

4. Free parameter optimization  

As we have seen that there are two free parameters in 
C-SVM formulation. One is the width σ of the Gaussian 
Kernel. The other is the coefficient C of data penalty term. Is 
there any explicit relation among these two factors and the 
criterion function described in the above section? 

No, the criterion function is lack of characteristic in the 
two parameters space with many local minimal. So, a grid 
search is needed to achieve a stable and appropriate optimal 
solution. 

To make the grid search fast, a parallel method and 
ZQP[10] idea is used. We use parallel QP trainer to solve QP 
problems with different width σ in separate memory. For a 
specific width, the ZQP idea indicates that the support 
vectors in problem with larger C mainly come from support 
vectors in problem with smaller C. So, we keep the result of 
the small-C problem, then put all non-support vector into 
shrink-queue(recalled that shrink-queue is supposed to store 
non-support-vector), then goon to train the problem with 
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larger C. By doing this, the large-C problem contain much 
fewer samples and can be solved much faster. 

In OC-SVM case, there is just one free parameter. And 
we just use parallel method to search different width σ of the 
Gaussian Kernel. 

We search σ from large to small, but how small the 
searching should stop is an important issue to be considered. 
We determine the lower bound of σ-searching by the 
following consideration. Because small σ makes a complex 
function, which cause over-fitting, we use a threshold of 
VC-dimension(got by method in Section 3) to prevent too 
small σ. If VC-dimension is larger than the threshold, the 
searching terminated. Vapnik suggest the VC-dimension 
should not be over sample size multiply 0.1, otherwise it’s 
easy to over-fitting.  

In our implement, the initial value of σ is set to twice 
the standard variance of the samples, and the initial C is set 
to 1. Each step of C is amplified by factor 2, and σ is 
multiplied by factor 0.7. 

5. Experiment  

We implement our method using c++ language and we 
call it MySVMLIB. By performing some experiments on 
UCI database [16], we compare our method with the 
LIBSVM v2.84[11] in terms of the training speed and 
classify accuracy. To extend SVM to multi-class problem, 
we use one-against-one method with logit committee voting 
strategy. 

The comparisons between the proposed method and 
LIBSVM are carried out in the following two aspects. 
a. MySVMLIB has automatic free parameters selection 

based on VC-dimension. LIBSVM  just output a 
cross-validation error, and doesn’t specify the free 
parameters algorithm. 

b. Both have the same SMO using second order information. 
But MySVMLIB uses Matrix Kernel cache with MOM. 
LIBSVM uses the LRU cache technique with Shrinking 
policy 

To make LIBSVM  comparable, a 511×  grid search is 
used to select the free parameters by minimize the 
cross-validation error provided by LIBSVM. The initial 
value and the search step of the free parameters are the same 
as MySVMLIB. 

In experiment, the recognition rate is got by a 10-fold 
cross validation. The CPU Time is the total training time 
including the time spent on cross validation, the one against 
one combination and the free parameters selection. The SV 
Rate is the average support vector rate, which is the number 

of support vector divided by the number of all the training 
samples.  

The intension of the experiment is to compare the 
proposed parameter selection algorithm with the commonly 
used grid search algorithm. It is carried on several small 
scale(less than 1000 samples) UCI dataset[16]. So, there are 
always enough memory to cache all sample, so both the 
caching policy(MOM and LRU) won’t take effect, and both 
program have the same SMO with shrinking. The results are 
shown in Table 1.  

From Table 1, it can be seen that, the proposed method 
is far better than the LIBSVM(version 2.84) especially in 
speed performance. It can be also seen that our algorithm 
required much less support vectors. The recognition 
accuracy of our algorithm outperform that of LIBSVM  for 
most dataset except “australian” and “vehicle”. 
 

Table 1.  Experiment on small sets 
 

Recognition Rate CPU Time (s) SV Rate Database 

MySVMLIB  LIBSVM MySVMLIB  LIBSVM MySVMLIB  LIBSVM 

australian 63.6% 68.7% 15.4 298 44.7% 65.4%

balance 89.9% 89.6% 9.14 159 33.1% 100% 

cancer 96.8% 86.7% 5.91 101 12.8% 66.7%

diabetes 74.9% 66.1% 14.3 209 59.3% 82.0%

german 72.2% 69.4% 33.4 511 68.4% 97.6%

glass 67.8% 60.3% 2.23 32.8 37.1% 95.4%

heart 67.0% 58.9% 12.3 44.3 65.2% 99.5%

liver 69.9% 65.5% 8.45 49.6 68.6% 97.3%

vehicle 63.9% 67.1% 14.7 408 47.4% 85.8%

votes 94.9% 77.0% 2.17 66.1 27.5% 79.6%

vowel 90.9% 68.4% 5.39 204 34.9% 99.3%

wine 76.4% 75.8% 0.827 14.6 28.0% 68.4%

 
Generally speaking, experiments show that the 

proposed SVM training method is much faster, and requires 
less support vectors to achieve a good enough classification 
accuracy. 

6. Conclusion and Discussion  

In this paper, a fast and parameter-free SVM training 
algorithm is presented. Multi-Operation Mixing is proposed 
to effectively integrate the advancing SVM training 
techniques together, including SMO with using second order 
information, matrix kernel caching and shrinking. 
Experiment shows that it is faster than the SMO with LRU 
cache method. Further, the upper bound of generalized error 
derived from SLT is found to be better than estimated error 
by cross-validation as a minimization criterion for free 
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parameters selection. At last, by using ZQP idea and parallel 
method, the free parameters searching process can be speed 
up dramatically.  

Though SVM training is intensive investigated and we 
have achieved a “fast” one, it is still too slow to tolerance in 
some cases, such as huge classification task that contains 
millions of training samples(e.g. handwritten Chinese 
character recognition problem, or face recognition). How to 
further speed up the proposed algorithm is a research topic 
worth for study.  
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