
Proceedings of the Seventh International Conference on Machine Learning and Cybernetics, Kunming, 12-15 July 2008

978-1-4244-2096-4/08/$25.00 ©2008 IEEE
3451

A NEW FAST TRAINING ALGORITHM FOR SVM

ZHI-JIE HE, LIAN-WEN JIN

School of Electronics and Information Engineering, South China University of Technology
E-MAIL: lianwen.jin@gmail.com

Abstract:
A fast SVM training algorithm is proposed in this paper.

By integrating kernel caching, shrinking and using second
order information, a fast Quadric Programming(QP) trainer is
achieved. For traditional two-class SVM, the generalized error
bound derived from Statistical Learning Theory(SLT) is
computed and minimized for the selection of parameters, with
the Zoutendijk(ZQP) idea and parallel method to speed up the
process. For one-class SVM, a compression criterion is
proposed to search the best kernel width automatically.
Experiments demonstrate that the proposed method is
significantly faster than LibSVM and requires less support
vectors to achieve good classification accuracy.

Keywords:
Support vector machine; statistical learning theory;

Gaussian kernel

1. Introduction

Support Vector Machine(SVM) has become one of the
most popular classification method in Machine Learning
area in recent years. The basic concepts and theory of SVM
has been described in many previous papers(e.g.
[1][2][3][4]). Three major problems involved in practical
usage of SVM training are speed, generalized error and free
parameter optimization. Due to the endeavor of researchers
in recent years, several methods are developed to speed up
the SVM training in every aspect. Such as Sequential
Minimal Optimization(SMO)[5], Kernel Caching[6],
Shrinking[7] and using second order information[8]. In this
paper, Multi-Operation Mixing is proposed as an effective
integration of all of these technologies to design a fast
Quadric Programming(QP) trainer for SVM.

Free parameter optimization for SVM is less
investigated in previous works[9], and most of the existed
method are based on a search to minimize the error estimated
by cross-validation or leave-one-out method. There are two
disadvantages of such methods. On one hand, time
consumption is great due to the repeating training. On the
other hand, there is uncertainty with the estimated error

which is relied on, and the chances, that the free parameter
which is found with a minimum estimated error has large
actual error, will be increasing when searching in free
parameter space.

A deterministic criterion which can be calculated
directly is needed to overcome these disadvantages. In
two-class situation, the upper bound of generalized error
derived from SLT(Statistical Learning Theory) [2] is the
obvious choice. In one-class situation, which is less
investigated, a compression criterion is proposed in this
paper, which are deterministic and fast to be calculated.

The search procedure is also important due to the
criterion function always has some local minimal. An
exhaustive grid search is proposed for the sake of integrating
the Zoutendijk Quadric Programming(ZQP) idea[10] and
parallel method to mitigate the time consumption and
guaranteeing the optimum. Also, for the precision required
in free parameter optimization is always low, large search
step is set to make the searching fast.

This paper is organized as follows: In Section 2, the
proposed fast QP trainer for SVM is described. In Section 3,
the suggested criterion is introduced and the method to
determine training parameter is described. In Section 4, the
proposed search algorithm for free parameter optimization is
presented. In Section 5, experiments are carried out to show
the effectiveness of the proposed method. Conclusion and
discussion are made in Section 6.

2. A new quadric programming trainer

The idea of Support Vector Machine is to separate the
training samples by a hyperplane with maximal margin.
Actually, finding such a hyperplane is a Quadric
Programming(QP) problem, so it is called QP trainer. The
basic formulation of this quadric problem has been
introduced in previous papers(e.g. [11]) and will be omitted
in the paper. We just adopt C-SVM form in two-class case
and OC-SVM[11][12] form in one-class case to introduce
our algorithm.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on November 18, 2008 at 07:57 from IEEE Xplore. Restrictions apply.

Proceedings of the Seventh International Conference on Machine Learning and Cybernetics, Kunming, 12-15 July 2008

3452

Decomposition[13] is an important idea in QP, which
divides the whole problem into a sequence of subproblems,
and SMO[5] is the typical and most efficient one. The
success of decomposition may due to the fact that the
subproblem can be solved efficiently. And, kernel
calculation is the main consumption in the whole training
time. Caching the kernel is an effective way to speed up the
algorithm.

In this paper, a two-step decomposition framework [7]
is used to facilitate the maximal re-usage of kernel caching
in the first step and the embedding of SMO in the second
step. A new method, Multi-Operation Mixing(MOM), is
proposed to make a smooth and fast integration of Kernel
Caching, Shrinking and SMO. The framework of MOM
training procedure is illustrated in figure 1.

The popular Least Recent Use(LRU) caching policy
seems the most frequently used method for caching.
Unfortunately, there is deficiency of LRU in SVM[6]. The
Matrix Kernel Cache(MKC)[7] technology is employed to
solve the deficiency of LRU. By the way of MKC, the first
decomposition step is put on the whole problem, and the
kernel of each sample pair in the subproblem is cached. It is
expected that more support-vector samples are in the matrix
kernel cache so that the cache can be reused effectively.
Obviously, larger cache means more kernel re-usage.

We think that the samples in cache represent the scale
of subproblem, and the subproblem should be gradually
changed, or, gradually selected to smooth the algorithm in
believing that smoothness brings fast convergence.

Before introducing the operation of gradually changing
the subproblem, we first describe the data structure of
caching. The samples in cache are organized as a
bidirectional list with a head node and a tail node, for
convenience of delisting. Also, there are two queues with
FIFO(First In First Out) property to deal with samples
outside the cache. One is called unknown-queue, which
contains the samples never cached and is initially set as the
all the sample with arbitrary order. The other is called
active-queue, which is used to contain samples when cache
reaches its memory limit. When we say that caching a
sample, it means that first the sample dequeues, and then it is
added to the tail of cache list, and finally the kernel cache is
updated. If the cache is full, it will delist the head of cache
list and push it to active-queue to get a place. So, we can
cache one sample either from unknown-queue or from
active-queue to change the subproblem gradually.

In the second decomposition step, the subproblem in
the kernel cache is solved by SMO, which further
decompose the subproblem into the two-sample problem
called working pair. The center problem of SMO is how to
select the working pair. In our algorithm, an efficient

approach is adopted, which uses second order information
for working pair selection. Detail can be found in [8].

Also, shrinking technique, which eliminate the
non-support-vector sample in advance to reduce the problem
size and accelerate the convergence, is implemented by a
shrink-queue, and a shrinking operation is inserted into
every K SMO iterations(in our algorithm, we set K=100). In
shrinking operation, we check the shrinking condition of
every sample in kernel cache, delist the samples satisfied it,
and push them into shrink-queue. Detail of shrinking
condition can be found in [11].

Figure 1. The framework of the proposed QP trainer

Now, integration of QP training algorithm is made by

the process of Multi-Operation Mixing(MOM) of four types
of operation, which are called in mix order with particular
proportion. As seen in Figure.1, the first operation is
UnknownIn(), which is defined as caching one sample from
unknown-queue. The second and third is ActiveIn() and
ShrinkIn() respectively. The last one is SMOIter(), which is
defined as one SMO iteration in kernel cache. The first three
ones are considered as the subproblem selection in the first
step decomposition, and the last one can be regard as the
further decomposition and quadric optimization.

In the process of MOM, the more times one type of
operation is called the more proportion it has. The proportion
control of these operations is a heuristic technique, which is
got by the following consideration. First, it’s appropriate to
make more UnknowIn() in early stage, so that the algorithm
will quickly get the general information of enough sample to
form a rough result. Second, when the active-queue became
large, which means the SMO takes too much load, then the
UnknowIn() should be slowed down. Third, we give
ShrinkIn() a certain proportion to see whether the
shrinked-sample should be back to cache. Forth,
active-queue is an extension of cache, so we should spend
equal CPU time on them, and their only difference is
ActiveIn() is fastK times slower than SMOIter() as for kernel
calculation. The algorithm is given in figure 2.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on November 18, 2008 at 07:57 from IEEE Xplore. Restrictions apply.

Proceedings of the Seventh International Conference on Machine Learning and Cybernetics, Kunming, 12-15 July 2008

3453

First calculate the following variables in order
unknowrate = unknownsize / samplesize;
alistrate = (cachelistsize + activequeuesize)

/ (samplesize - unknownsize);
unknownpart = unknowrate * (1 - alistrate);
knownpart = 1 – unknownpart;

Then, the proportion of four operations is given by:
SMOIter() : ActiveIn() : ShrinkIn() :

UnknownIn()
= (fastK* knownpart*5) : (knownpart*5)

: knownpart : unknownpart

Figure 2. Proportion updating algorithm

In Figure2, unknownsize denotes the length of
unknown-queue, and samplesize denotes the total size of
sample, and cachelistsize denotes the length of the cache list.
fastK denotes the times by which SMOIter() is faster than
other operations, since it can get the kernel value in cache
without kernel calculation. Therefore, it is appropriate to let
SMOIter() have larger proportion. Also, the proportion will
be changed after each operation, so it need to be updated. As
this method is a heuristic technique, it is updated every T
operations to weaken its time consumption(we set T=100 in
our experiments).

In summary, the proposed fast SVM training algorithm
is given in Figure 3.

Step 1: Compute the proportion by algorithm shown in
fig.2.
Step 2: Repeat MOM T times (T=100 in our experiments)
according to the proportion of four types of operations,
and call them in random order.
Step 3: repeat 1 and 2 until stopping condition is met.

Figure 3. The new fast SVM training algorithm

3. Criterion calculation for automatically parameter
determination

Although in section 2 we have showed an efficient QP
training algorithm, there are still free parameters needed to
be tuned. In this paper, Gaussian kernel is considered, in
which the width is the main free parameter. A criterion is
needed to determine the goodness of a classifier with
specific parameter. Search the parameters and minimize the
error estimated by Cross Validation is frequently used. But
that is slow for repeated training, and the error will rely on

the selection of validation set in probability, that may cause a
general over-fitting while searching the parameter space.

The upper bound of generalized error derived from
SLT(Statistical Learning Theory) is adopted as the criterion
to determine the free parameters for C-SVM in our method.
As a deterministic criterion, it won’t be affected by
probability distribution. Therefore it should get a stable
result with better generalization performance. There is just a
tiny time consumption needed immediate after a single train.
For one-class case, another criterion is proposed in section
B.

3.1. C-SVM

In two-class case, the upper bound of generalized error
is adopted as the criterion. Recall from STL, we can choose
some η (10 ≤≤η) such that with probability η−1 , the
following bound holds:

)
4

11(
2 ε
ε emp

emperror

P
PP +++≤ (1)

l
h
lh

where 4
ln)12(ln

4,

η

ε
−+

=

errorP is the actual generalized error. empP is the
empirical error obtained in training samples. l is the size of
training samples. h is the VC-dimension of the SVM
classifier, which has the following bound.

12

2

+
∆

≤ Rh (2)

R is the minimal radius of the hypersphere, that
contains all the support-vector samples. ∆ is the margin of
the hyperplane. The hypersphere and hyperplane are both
defined in feature space generated by Gaussian kernel, and
can be calculated by geometry. Actually, computing R is
another QP, but this can be simplified by calculating the
maximal distance D among the support-vector samples,
because the following holds.

12

2

+
∆

≤⇒≤ DhDR (3)

To further speed up the process, a heuristic algorithm
shown in Figure 4 is proposed to approximate the maximal
distance D .

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on November 18, 2008 at 07:57 from IEEE Xplore. Restrictions apply.

Proceedings of the Seventh International Conference on Machine Learning and Cybernetics, Kunming, 12-15 July 2008

3454

Initially, we defined the distance function),(21 xxD in
the feature space by kernel function.

),(22),(2121 xxKernelxxD −=
And let k =1.
Step1: for each sample, find j that maximize),(kj xxD
Step2: jk ←
Step3:Repeat Step1 and Step2 N times
Output: the final value of),(kj xxD

Figure 4. An algorithm computing the maximal distance D

There is also a tiny problem in choosing η . We just use
(4) to simplify the formulation and make η adaptively be
smaller when lower lh / rate.

lh /2=η or
h
l2ln

4
ln −=η (4)

3.2. OC-SVM

In one-class case, there are still two free parameters
[12]. The idea of tuning them by a criterion is the same as
two-class case. Before introducing the criterion proposed,
we must recall the theory of OC-SVM. OC-SVM uses a
hyperplane to separate training samples from origin with
maximal margin. In another sense, the hyperplane generates
a region that covers most of the training samples, while the
region is of minimal volume. To do so, we can estimate the
support of a high-dimensional distribution. It is expected to
find a region that is small in volume and high in coverage
rate.

The first free parameter is used to control the fraction of
outlier samples, which is not covered by the region. The
selection of this is based on the consideration of the tradeoff
between coverage rate and the volume of the region. This
tradeoff should be decided by the algorithm user, so this
parameter is set as an input value.

The other free parameter is used to select different
kernel. Gaussian kernel is adopted here, and this free
parameter should become the width of the Gaussian kernel.
The smaller the kernel width is, the stronger the region
representation ability will be, but the more chances of
over-fitting. So, the criterion proposed to solve the selection
of the kernel width is the following.

x
x

x
xxEntropy

y
xx

y
xxyxKLDistancewhere

SVraterKLDistancePNPEntropy

−
−+=

−
−−+=

××+

1
1ln)1(1ln)(

1
1ln)1(ln),(

)],()(min[modmod

 (5)

Where N is the training sample size. modP is the model
pri-probability, and)(modPEntropy is large when the model
is complex. r is just the first parameter used to control the
fraction of outlier as an user input. SVrate is the
support-vector rate got from dividing the number of
support-vector samples by the total size of samples, which
can be look on as an empirical fraction of outlier that we
actually got. So,),(SVraterKLDistance is the K-L distance
of these two fractions. The nearer these two values are, the
better the result we got, and the smaller the K-L distance will
be, and vice versa.

This criterion gets idea from information compression
by Minimum Description Length(MDL) principle.
Considering a new test sample set of size N, we need to store
which are the outliers most efficiently. First, we must store
the information that whether this set is under the distribution
has been modeled, which causes)(modPEntropy bits on
average. When it is true with probability modP , we supposed
to have a fraction r of outliers but actually the fraction is
SVrate , so extra bits are needed to represent this difference.

The estimation of modP is a tough problem. In our
method, the uniformed bias of the hyperplane, which is bias
divided by the sum of alpha, is used as the modP heuristically.
It is worth to notice that a complex model is always with a
small bias.

∑
=

α
biasPmod (6)

4. Free parameter optimization

As we have seen that there are two free parameters in
C-SVM formulation. One is the width σ of the Gaussian
Kernel. The other is the coefficient C of data penalty term. Is
there any explicit relation among these two factors and the
criterion function described in the above section?

No, the criterion function is lack of characteristic in the
two parameters space with many local minimal. So, a grid
search is needed to achieve a stable and appropriate optimal
solution.

To make the grid search fast, a parallel method and
ZQP[10] idea is used. We use parallel QP trainer to solve QP
problems with different width σ in separate memory. For a
specific width, the ZQP idea indicates that the support
vectors in problem with larger C mainly come from support
vectors in problem with smaller C. So, we keep the result of
the small-C problem, then put all non-support vector into
shrink-queue(recalled that shrink-queue is supposed to store
non-support-vector), then goon to train the problem with

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on November 18, 2008 at 07:57 from IEEE Xplore. Restrictions apply.

Proceedings of the Seventh International Conference on Machine Learning and Cybernetics, Kunming, 12-15 July 2008

3455

larger C. By doing this, the large-C problem contain much
fewer samples and can be solved much faster.

In OC-SVM case, there is just one free parameter. And
we just use parallel method to search different width σ of the
Gaussian Kernel.

We search σ from large to small, but how small the
searching should stop is an important issue to be considered.
We determine the lower bound of σ-searching by the
following consideration. Because small σ makes a complex
function, which cause over-fitting, we use a threshold of
VC-dimension(got by method in Section 3) to prevent too
small σ. If VC-dimension is larger than the threshold, the
searching terminated. Vapnik suggest the VC-dimension
should not be over sample size multiply 0.1, otherwise it’s
easy to over-fitting.

In our implement, the initial value of σ is set to twice
the standard variance of the samples, and the initial C is set
to 1. Each step of C is amplified by factor 2, and σ is
multiplied by factor 0.7.

5. Experiment

We implement our method using c++ language and we
call it MySVMLIB. By performing some experiments on
UCI database [16], we compare our method with the
LIBSVM v2.84[11] in terms of the training speed and
classify accuracy. To extend SVM to multi-class problem,
we use one-against-one method with logit committee voting
strategy.

The comparisons between the proposed method and
LIBSVM are carried out in the following two aspects.
a. MySVMLIB has automatic free parameters selection

based on VC-dimension. LIBSVM just output a
cross-validation error, and doesn’t specify the free
parameters algorithm.

b. Both have the same SMO using second order information.
But MySVMLIB uses Matrix Kernel cache with MOM.
LIBSVM uses the LRU cache technique with Shrinking
policy

To make LIBSVM comparable, a 511× grid search is
used to select the free parameters by minimize the
cross-validation error provided by LIBSVM. The initial
value and the search step of the free parameters are the same
as MySVMLIB.

In experiment, the recognition rate is got by a 10-fold
cross validation. The CPU Time is the total training time
including the time spent on cross validation, the one against
one combination and the free parameters selection. The SV
Rate is the average support vector rate, which is the number

of support vector divided by the number of all the training
samples.

The intension of the experiment is to compare the
proposed parameter selection algorithm with the commonly
used grid search algorithm. It is carried on several small
scale(less than 1000 samples) UCI dataset[16]. So, there are
always enough memory to cache all sample, so both the
caching policy(MOM and LRU) won’t take effect, and both
program have the same SMO with shrinking. The results are
shown in Table 1.

From Table 1, it can be seen that, the proposed method
is far better than the LIBSVM(version 2.84) especially in
speed performance. It can be also seen that our algorithm
required much less support vectors. The recognition
accuracy of our algorithm outperform that of LIBSVM for
most dataset except “australian” and “vehicle”.

Table 1. Experiment on small sets

Recognition Rate CPU Time (s) SV Rate Database

MySVMLIB LIBSVM MySVMLIB LIBSVM MySVMLIB LIBSVM

australian 63.6% 68.7% 15.4 298 44.7% 65.4%

balance 89.9% 89.6% 9.14 159 33.1% 100%

cancer 96.8% 86.7% 5.91 101 12.8% 66.7%

diabetes 74.9% 66.1% 14.3 209 59.3% 82.0%

german 72.2% 69.4% 33.4 511 68.4% 97.6%

glass 67.8% 60.3% 2.23 32.8 37.1% 95.4%

heart 67.0% 58.9% 12.3 44.3 65.2% 99.5%

liver 69.9% 65.5% 8.45 49.6 68.6% 97.3%

vehicle 63.9% 67.1% 14.7 408 47.4% 85.8%

votes 94.9% 77.0% 2.17 66.1 27.5% 79.6%

vowel 90.9% 68.4% 5.39 204 34.9% 99.3%

wine 76.4% 75.8% 0.827 14.6 28.0% 68.4%

Generally speaking, experiments show that the

proposed SVM training method is much faster, and requires
less support vectors to achieve a good enough classification
accuracy.

6. Conclusion and Discussion

In this paper, a fast and parameter-free SVM training
algorithm is presented. Multi-Operation Mixing is proposed
to effectively integrate the advancing SVM training
techniques together, including SMO with using second order
information, matrix kernel caching and shrinking.
Experiment shows that it is faster than the SMO with LRU
cache method. Further, the upper bound of generalized error
derived from SLT is found to be better than estimated error
by cross-validation as a minimization criterion for free

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on November 18, 2008 at 07:57 from IEEE Xplore. Restrictions apply.

Proceedings of the Seventh International Conference on Machine Learning and Cybernetics, Kunming, 12-15 July 2008

3456

parameters selection. At last, by using ZQP idea and parallel
method, the free parameters searching process can be speed
up dramatically.

Though SVM training is intensive investigated and we
have achieved a “fast” one, it is still too slow to tolerance in
some cases, such as huge classification task that contains
millions of training samples(e.g. handwritten Chinese
character recognition problem, or face recognition). How to
further speed up the proposed algorithm is a research topic
worth for study.

Acknowledgments

This work is supported in part by the research fundings
of NSFC (no. U0735004, 60772216) and GDNSF (no.
07118074).

References

[1] Christopher J.C. Burges1. A tutorial on support vector
machines for pattern recognition. Data Mining and
Knowledge Discovery, Springer Netherlands. Vol 2,
Number 2. June, 1998

[2] Vapnik, V. Statistical learning theory. John Wiley and
Sons, Inc., New York, 1998.

[3] Pavel Laskov. Feasible direction decomposition
algorithms for training support vector machines.
Machine Learning, 46(1), 2002:315-349

[4] Norikazu Takahashi, Tetsuo Nishi. Rigorous proof of
termination of smo algorithm for support vector
machines. IEEE Transactions on Neural Networks, Vol.
16, No. 3, May 2005.

[5] John C.Platt. Fast training of support vector machines
using sequential minimal optimization. In B.
Sch¨olkopf, C. J. C. Burges, and A. J. Smola, editors,
Advances in Kernel Methods- Support Vector
Learning, Cambridge, MA, MIT Press, 1998

[6] G. W. Flake and S. Lawrence. Efficient svm regression
training with smo. Machine Learning,
46(1-3):271–290, March 2002.

[7] Jian-xiong Dong, Adam Krzyzak, Ching Y.Suen. A
fast svm training algorithm. First International
Workshop on SVM, Springer-Verlag Berlin
Heidelberg 2002:53-67.

[8] Rong-En Fan, Pai-Hsuen Chen, Chih-Jen Lin. Working
set selection using second order information for
training support vector machines. Journal of Machine
Learning Research 6,2005:1889-1918

[9] Matthew Boardman and Thomas Trappenberg. A
heuristic for free parameter optimization with support

vector machines. IEEE International Joint Conference
on Neural Networks, Canada, July, 2006:1337-1344

[10] Rodolfo E.Ibarra Orozco, Neil Hernandez-Gress, Juan
Frausto-Solis, Jaime Mora Vargas. Increasing the
training speed of svm the zoutendijk algorithm Case.
F.F.Ramos et al.(Eds.): ISSADS 2005, LNCS 3563,
2005:312-320

[11] Chih-Chung Chang, Chih-Jen Lin, LIBSVM: a library
for support vector machines. 2007. Software available
at http://www.csie.ntu.edu.tw/~cjlin/libsvm/

[12] Bernhard Scholkopf, John C.Platt, John Shawe-Taylor,
Alex J. Smola, Robert C.Williamson. Estimating the
support of a high-dimensional distribution. Neural
Computation 13, 2001:1443-1471

[13] Pai-Hsuen Chen, Rong-En Fan, Chih-Jen Lin. A study
on smo-type decomposition methods for support vector
machines. IEEE Transactions on Neural
Networks,17,July 2006:893-908

[14] C.-L. Liu, K. Nakashima, H. Sako, H. Fujisawa,
Handwritten digit recognition: investigation of
normalization and feature extraction techniques,
Pattern Recognition, 37(2): 265-279, 2004

[15] Tong Luo,Lawrence O.Hall, Dmitry B.Goldgof,
Andrew Remsen. Bit reduction support vector machine.
Proceedings of the Fifth IEEE International
Conference on Data Mining (ICDM’05),2005

[16] C. J. Merz and P. M. Murphy et al., UCI repository of
machine learning databases , Univ. California at Irvine.
URL
http://www.ics.uci.edu/~mlearn/MLRepository.html

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on November 18, 2008 at 07:57 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

