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Abstract 
 

In this paper, a novel weightlessness feature for 
activity recognition from a tri-axial acceleration 
signals have been proposed. Since the orientation 
between accelerometer and user’s body may 
continuously change when user perform activities, we 
propose an algorithm to calibrate the actual vertical 
direction of accelerometer signal through estimating 
the gravitational direction.  We combine peaks of 
signal and weightlessness feature to produce six 
dimensional weightlessness-based features for activity 
recognition. Classification of the activities is 
performed with Support Vector Machine (SVM). The 
average accuracy of four activities using the proposed 
weightlessness-based features is 97.21%, which are 
better than using traditional widely used time-domains 
features (mean, standard deviation, energy and 
correlation of acceleration data). Experimental results 
show that the new features can be used to effectively 
recognize different human activities and they are 
robust for different location of accelerometer. 
 
1. Introduction 

Context awareness is a central issue in ubiquitous 
and wearable computing [1]. Accurate recognition and 
tracking of human activities is an important goal of 
ubiquitous computing. Activity recognition is also one 
technology frequently embedded in wearable systems 
[1~8]. For example, several activities such as 
ambulation, typing and talking were distinguished in [6] 
with five small bi-axial accelerometers. In [7] and [8], 
daily activities of standing, walking, climbing up/down 
stairs and brushing teeth, were analyzed based on the 
data collected from accelerometers . 

Although in the literature there are already exist 
many approaches of using acceleration signals for 
physical activity recognition, little works have been 
done to validate the idea under real-world 

circumstances [6]. Most results use data collected in 
laboratory conditions and very few subjects (often the 
experimenters themselves). Interestingly, Foerster [3] 
demonstrated 95.8% recognition rates for data 
collected in the laboratory but recognition rates 
dropped to 66.7% for data collected outside the 
laboratory in naturalistic settings. In this work, we 
collected 43 volunteers’ data from different day under 
realistic natural conditions. 

As activity recognition can be formulated as a 
typical classification problem and just like many 
pattern recognition problem, features extraction plays a 
crucial role during the recognition process. Although 
in the literature there are already many studies on 
exploring the extraction of features from acceleration 
data, few works that make quantitative comparison of 
their quality are reported. In general, most of the 
attempts to extract features from acceleration date can 
be classified into two categories, say, time-domains 
features and frequency-domains features. Traditional 
widely used time-domains features are peak [4], mean 
[2, 6, 8], variance or standard deviation [2, 6], energy 
[2, 6, 8], entropy [6], correlation between axes [2, 6, 8] 
and so on. The most popular frequency-domains 
features are FFT coefficients [1]. As the time-domains 
features can be easily extracted in real time, they are 
more popular in many practical acceleration activity 
recognition systems. 

In this paper, firstly we propose a novel 
weightlessness feature from vertical direction of 
acceleration signal. Secondly, we propose an algorithm 
to calibrate actual vertical direction of acceleration 
through estimating the gravitational direction. Finally, 
we combine peaks of signal and weightlessness feature 
to extract six dimensional weightlessness-based 
features. Classification results based on SVM show 
that the weightlessness-based features can effectively 
recognize different realistic human activities and it 
robust enough for different location of the sensor. 
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2. Data Collection 
Data collection apparatus and the diagram of our 

experimental setup are shown in Fig.1. We use a tri-
axial accelerometer ADXL330 manufactured by 
Analog Devices, which is capable of sensing 
accelerations from –3.0g to +3.0g with tolerances 
within 10%. The output signal of the accelerometer is 
sampled at 100 Hz. The data generated by the 
accelerometer is transmitted to a PDA wirelessly over 
Bluetooth. We collected four common activities: 
jumping, still, running and walking. In order to achieve 
robustness with regard to sensor position, subjects put 
the accelerometer in their clothes pocket, waist bell 
and trousers pocket respectively. Forty-three subjects 
were asked to perform each activity about one minute. 
Fig. 2 shows examples of the vertical axis raw data. 

                       
(a)                                       (b) 

Figure 1:  Data collection apparatus (a), Diagram of 
experimental setup (b). 
 

   
(a) Jumping                          (b) Running 

   
(c) Still                                 (d) Walking 

Figure 2:  Examples of the vertical axis (Y-axis) raw 
signals for different activities 

 
3. Feature extraction 
 
3.1. The Peak Detection 
 

Peaks in the signals of the accelerometer can be 
expected to reveal a great deal more than the basic 
statistics, such as the minimum, maximum, average or 
variance/covariance over a certain intervals [4]. The 
peak of the acceleration signal reflects the intensity of 
the activity. Therefore it can roughly classify different 
activity. In order to detect the peaks, we first reduced 
the noise using 1-D Gaussian smoothing and moving 

average for each axis data. The accelerometer used in 
our experiments provides 3-axis outputs (X, Y and Z) 
of data. However, instead of detect the peak form these 
acceleration signals separately, which might be 
sensitive to device’s placement and orientation, we 
thus combination of them using Eq.1 to derive a net 
acceleration independent of orientation. 

)()()()( 222 iaiaiaiA zyx ++=     ni ,,1L=    (1) 

where )(iA  is the net acceleration at time i , )(iax , 

)(iay , )(iaz  stands for X-axis, Y-axis, and Z-axis 

acceleration at time i  respectively, and n  is the 
number of recorded data. Finally, we detect the peak 
from net acceleration using a dynamic threshold 
similar to [9]. 
 
3.2. The Weightlessness Detection 
 
3.2.1. The weightlessness feature. We know that 
when people run and jump, the human body would 
leave the ground and stay in a weightlessness state for 
a short while. Since the three-axis accelerometer is 
attached to the human body, the weightless state can be 
revealed in the vertical axis signal. Fig.3 shows the 
weightlessness phenomenon while people jump. We 
observed that the vertical direction signal reveal a 
period of weightlessness while the human body away 
from the ground. 

 
Figure 3: The weightlessness of jumping 

 
3.2.2. Calibration of the vertical directional 
acceleration signals. In order to extract the weightless 
feature from the 3D acceleration signal, it is necessary 
to determine the vertical direction of the three-axis 
accelerometer. The most popular algorithm is attaching 
the accelerometers in a known position and orientation 
relative to the use’s body. However, it is neither 
practical nor robust to indicate a direction as the 
vertical direction. Since the orientation between 
accelerometer and user’s body may continuously 
change, we propose an algorithm to calibrate the actual 
vertical direction of accelerate signal through 
estimating gravitational direction. The algorithm works 
as follows: 
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As we know, when the sensor is static, the total 
acceleration of the sensor is due to the gravitational 
acceleration, which means ［2］: 

Gaaa zyx =),,( 000                        (2) 
Let ))(),(),(( iaiaia zyx  be the acceleration vector of 

the three-axis accelerometer at time i  , thus the 
dynamic component of signals is given by:  

),,())(),(),(())(),(),(( 000 zyxzyxzyx aaaiaiaiaiaiaia −=′′′   (3) 
In order to detect the static state of raw 

accelerometer signal, we calculate the max, min and 
mean values of the acceleration signal within 
N samples time window as following: 

))((max_ iaMaxa kk ′=′ )1,0,,,( Nizyxk L==        (4) 
 ))((min_ iaMina kk ′=′ )1,0,,,( Nizyxk L==          (5) 

),,( ___ meanzmeanymeanx aaa ′′′  

2
),,(),,( min_min_min_max_max_max_ zyxzyx aaaaaa ′′′+′′′

=   (6) 

If the 3D acceleration signals satisfy the Eq.7 and 
Eq.8, we assume that the sensor is static. 

ε≤′−′ min_max_ kk aa     ),,( zyxk =              (7) 

ε≤−′′′ Gaaa meanzmeanymeanx ),,( ___
               (8) 

where ε is a boundary parameter. Then the vertical 
direction is calculated as: 

),,(
),,(

___

___

meanzmeanymeanx

meanzmeanymeanx

aaa
aaa

D
′′′

′′′
=⊥

               (9) 

The actual vertical signal can be finally calibrated as: 
 ⊥⊥ •′′′=′ Diaiaiaa zyx ))(),(),((                (10) 

In practical application, although the position and 
orientation of the accelerometer are not known, our 
algorithm can calibrate the actual vertical direction of 
acceleration through estimating the gravitational 
direction.  
 
3.3. Weightlessness-based features 

Features were extracted from the raw accelerometer 
data using a window size of 512 with 256 samples 
overlapping between consecutive windows. Feature 
extraction on windows with 50% overlap has 
demonstrated success in previous work [6, 8]. At a 
sampling frequency of 100Hz, each window represents 
5.12 seconds. For each window, the following six 
dimensional features were extracted: 

 The mean of the peak height 
 The mean of the weightlessness length 
 The mean of the peak interval 
 The mean of the weightlessness interval 

 The ratio of the peak number to the 
weightlessness number 

 The ratio of the weightlessness length to the 
window length 

 
4. Classification Method 

The classification algorithm we used is Support 
Vector Machine (SVM) [10]. We used One-versus-
One Strategy (OVO), where a set of binary classifiers 
are constructed using corresponding data from two 
classes. While testing, we used the voting strategy of 
“Max-Wins” to produce the output. 

The leave-one-subject-out validation test [2] was 
used to evaluate the classifiers’ ability to recognize 
unacquainted actions. Classifiers were trained on 
activity data for all subjects except one. The classifiers 
were then tested on the data for only the subject left 
out of the training data set. This process was repeated 
for all subjects.  In other words, the recognition 
process is subject-independent. 
 
5. Experimental Results and Discussion 

Since six dimensional weightlessness-based 
features are time-domains features, thus we compare 
their performance against widely used traditional 
features. The following four kinds of traditional time-
domains features were extracted from each axes of 
accelerometer (result in total 12 features): mean, 
standard deviation, energy and correlation between 
axes. The effectiveness of these features has been 
demonstrated in many prior works [e.g. 6, 8]. 

Since the sensor location is important [6], we 
evaluate the recognition results for different sensor 
locations respectively, namely the locatoin in subject’s 
clothes pocket (CP), waist bell (WB), trousers pocket 
(TP) and mixed data of all (MD). We carried out 
leave-one-subject-out validation tests for each of the 
above setting. Table 1 shows recognition results based 
on tradition time-dominions features for the four 
settings respectively.  

 
Table 1: Accuracy of traditional time-domain features 

for different accelerometer location  
 Still Walk Run Jump Average 

CP 99.70 1.16 72.67 58.43 57.99 
WB 6.68 98.54 81.68 82.26 67.29 
TP 97.67 92.15 79.94 64.82 83.64 
MD 99.22 4.26 86.53 40.40 57.60 
 

It can be seen that the sensor placed on the subject’s 
trousers pocket is the most powerful while the sensor 
located in clothes pocket and waist bell perform badly. 
This may be due to the following reasons: first, as the 
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main parts of the activities (still, walking, running and 
jumping) involve with the legs, thus the sensor dose 
not sensitive when only using one sensor locating in 
clothes pocket or waist bell. This may cause the values 
of walking data small and they are similar to that of 
still (see Fig 2 (c) and (d)). Therefore, the walking and 
still often confuse each other. For example, we can see 
from table 1 that walking often recognize as still when 
we put the sensor in  subject’s clothes pocket while 
still often recognize as walking when the sensor locate 
in waist bell. For lower body activity, the best 
placement for acceleration sensors is around trousers 
pocket. Second, the characteristics of the gait signals 
are unique for every person while leave-one-subject-
out test is subject-independent.  

Table 2 shows the recognition results of our six 
dimensional weightlessness-based features for 
different sensor location.  It can be seen that accuracy 
using our proposed new features is significantly much 
higher than using traditional time-domains features. 
Although the sensor is located in different place, our 
weightlessness-based features perform better in every 
position. In other words, our new method is robust 
enough for different location of sensor and is more 
practical for real-time acceleration activity recognition 
system. 
 
Table 2 Accuracy of weightlessness-based features for 

different accelerometer location 
 Still Walk Run Jump Average 

CP 99.70 95.63 94.76 97.96 97.02 
WB 97.96 97.09 98.25 97.09 97.60 
TP 98.25 98.54 97.38 95.93 97.52 
MD 98.74 97.48 96.12 96.51 97.21 
 

Table 3 Confusion matrix based on mixed data for 
weightlessness-based features   

 Still Walk Run Jump 
Still 98.74 1.06 0.09 0.09 

Walk 1.93 97.48 0.38 0.19 
Run 0.58 0.96 96.12 2.32 
Jump 1.20 1.06 1.16 96.51 
 
In order to find out which activities are relatively 

harder to be recognized, we analyzed the confusion 
matrices. Table 3 shows the aggregate confusion 
matrix based on mixed data for our new features. It can 
be seen that running activity is often confused with 
jumping and in general hard to recognize. This result is 
reasonable, because the raw signals of running are 
similar to the jumping and both reveal a period of 
weightlessness (see fig. 2 (a) and (b)). 

 

6. Conclusion 
A novel Weightlessness feature for activity 

recognition from a tri-axial acceleration signals have 
been proposed in this paper. We propose an algorithm 
to calibrate actual vertical direction of acceleration 
through estimating the gravitational direction. And 
then we combine peaks of signal and weightlessness 
feature to extract six dimensional weightlessness-based 
features as the input features of the SVM classifier. 
Activity recognition results are based on acceleration 
data collect from a tri-axial acceleration placed on 43 
subjects under naturalistic conditions. The average 
accuracy of four activities using the proposed 
weightlessness-based features is 97.21%, which are 
better than using traditional time-domains features. 
The experiment results show that the new features can 
effectively recognize different human activities and it 
robust enough for different location of accelerometer. 
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