
A Simplified Non-Gaussian Mixture Model for Signal LO Detection in α-Stable Interference 
 
 

Xutao LI1, Lianwen JIN1, Shouyong WANG 2 

1School of Electronics and Information Engineering, South China University of Technology 
2Key Research Laboratory, Wuhan Radar Institute 

E-mail: lixutao@scut.edu.cn 
 

Abstract 
 
  Non-Gaussian statistic model, alpha stable distribution 
has gained much attention due to its generality to represent 
heavy-tailed and impulsive interference. Unfortunately, 
there is no closed form expression for the probability 
density function of alpha-stable distributions. Hereby, to 
develop the approximate expressions is of importance for 
signal detection and denoising. This paper is concerned 
with the weak signal detection in α-stable interference. We 
present a novel approximate expression that is a simplified 
version of Cauchy-Gaussian mixture (CGM) for symmetric 
α-stable (SαS) distribution. Consequently, the non-linearity 
limiter of locally optimal (LO) detector is deduced. 
Compared with Cauchy detector, the proposed detector has 
near optimal performance.  
 
1. Introduction 
 
  Signal detection, which detects the presence of a signal in 
noisy observations, is a classical problem that has to be 
implemented in a variety of applications, the more obvious 
ones being in radar, sonar and communications. The signal 
detection problems usually are viewed as problems of 
hypothesis testing in statistical inference [1] in which the 
generalized likelihood ration test (GLRT) is the most widely 
accepted method of solution. In most of previous work on 
detection, it has been assumed that the signal is embedded in 
Gaussian noise and the detectors are designed accordingly. 
The Gaussian noise assumption has been generally justified 
with the central limit theorem and with the analytical 
convenience of the Gaussian probability density function 
(PDF) which leads to linear and hence tractable equations 
[2]. However, there are also many cases in detection, in 
which the noise is decidedly non-Gaussian. 
Non-Gaussianity often results in significant performance 
degradation for detector designed under the Gaussian 
assumption.  
  The non-Gaussian noise in practice can be characterized 
by its impulsive nature. As a result, its density functions in 
the tail heavier than those of Gaussian density. Since 1991, 
there has been a tremendous interest in the class of α-stable 
distributions [3], which are a generalization of Gaussian 

distribution, but are able to model a wider range of 
phenomena and can be of a more impulsive nature [4,5,6].  
  In a detection problem, optimal processing is feasible if 
the noise PDF is analytically known and tractable. 
Unfortunately, no closed forms for the probability densities 
of alpha stable distribution except for three special cases, 
Gaussian, Cauchy and Pearson distribution [3]. Therefore, to 
search approximation mixture model is a feasible way. 
Currently, there are two classes of approximation mixture 
models, one is scale mixture of the Gaussian, and it is 
popular to approximate the PDF by a finite Gaussian 
mixture model (GMM) [2]. Although GMM fits the SSα  
distribution well, it cannot capture the algebraic tails of 
alpha stable distributions with small number of Gaussian 
components N and loss analytical convenience with large N. 
The other one is Cauchy Gaussian mixture model (CGM) 
that is more expensive computationally in evaluation triple 
parameters [7]. In order to develop tractable approximation 
model, we introduce a simplified CGM called SCGM with 
bi-parameter, which fits SSα  density well meanwhile 
keeps less computational burden. Based on such model, the 
zero-memory non-linear (ZMNL) function is deduced and 
corresponding adaptive Locally Optimum (LO) detectors is 
constructed. 
  This paper is organized as follows. Section 2 explains the 
main concept of alpha stable distribution parametersα , σ  
and µ . The SCGM model is proposed in Section 3, The 
corresponding ZMNL and adaptive LO detector are 
presented in Section 4. The experimental results for 
detection of deterministic direct current signal in α-stable 
interference are shown in the last. 
 
2. Alpha stable distribution 
 
  A random variable x is said to have a alpha-stable 
distribution ),,( µβσαS if there are parameters 20 ≤< α , 

11 ≤≤− β , 0>σ , ∈µ  so that its characteristic function 
has the following form [3]: 

]exp[)( xjE θθ =Φ  
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  An alpha stable distribution is completely determined by 
four parameters: the characteristic exponent α , the index of 
skewness β , the scale exponent σ  and the location 
parameter µ . The distribution is said to be symmetric alpha 
stable ( SSα ) when 0=β and a stable distribution is called 
standard if 1,0 == σµ . If 1≠α , the cases 0>β  and 0<β  
correspond to positive skewness and negative skewness 
respectively. 
  The tails of alpha stable distribution decrease like a power 
function and the rate of decay depends on characteristic 
exponent α , as shown in Fig.1, the smaller α , the slower 
the decay and the heavier the tails.  

   
Fig.1 Graphs of standard SSα densities corresponding to the value 

5.0=α , 0.1=α , 5.1=α and 0.2=α  
 
  There are no closed forms for the probability densities of 
alpha stable distribution except for three special cases. The 
case of 0,2 == βα corresponds to the Gaussian distribution, 
while 0,1 == βα corresponds to the Cauchy distribution 
and 1,5.0 == βα corresponds to the Pearson distribution. 
The density functions with 0=µ in such three cases are 
given by 
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3. Non-Gaussian mixture model 
 
  In a detection problem, optimal processing is feasible if 
the noise PDF is analytically known and tractable. Gaussian 
mixture models are popular because of their universal 
approximation properties and have been used to model 
impulsive noise. The classical Middleton Class A models are 
Poisson weighted Gaussian mixture models where the 
variances increase linearly. Since the SSα  random variable 
can be represented as a scale mixture of the Gaussian, it is 
natural to approximate its PDF by a finite Gaussian mixture 
model (GMM) which is based on the following theorem 
[2,3].  
Theorem 1. Let X be distribution with Gaussian distribution, 

),0(~ 2σNX . Also let Y be s positive stable random variable, 






























 0,1,
4

cos~
/2

2/

α

α
παSY  and be independent from X, 

then, )0,0,(~2/1 σαSXYZ = . 
  Consequently, Z is a compound random variable. By 
letting 2/1YV = , one can express that PDF of Z in the 
following way. 
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The PDFs of Z that can be expressed as in equation (5) are 
called scale mixtures of normal distributions. In addition, 
equation (5) can be approximated by finite mixture model 
with arbitrary parameters 
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  Kuruoglu proposed using the Expectation Maximization 
(EM) algorithm to obtain finial approximation with 10 
Gaussian terms [2]. To achieve accurate approximation, the 
number of Gaussian components N usually is larger than 
eight [8]. Although GMM fits the SSα  distribution well, it 
cannot capture the algebraic tails of alpha stable 
distributions with small N and loss analytical convenience 
with large N. 
  The other one class of non-Gaussian mixture model is 
Cauchy Gaussian mixture model (CGM). The PDF of CGM 
is given by 
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where ε is the mixture ratio, 2
gσ is the Gaussian variance  

and ασγ = is the dispersion of SSα  distribution. Such 
mixture model was first proposed in [9]. Using EM 
algorithm, Swami achieved the parameters estimation of 
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such model [7]. However, his approach is more expensive 
computationally due to iterative estimation for triple 
parameters ),,( γσε . 
  To achieve tractable approximation and less 
computational burden, we consider a Simplified Cauchy 
Gaussian Mixture model (SCGM) with bi-parameter is 
defined as 
       )()()1()( xfxfxf CG εε +−=   
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where ε is the mixture ratio, σ is the scale exponent of 
SSα  distribution. We calculate the ratio parameter ε  by 

the following method that utilizes the Fractional Lower 
Order Moment (FLOM) of SSα  random samples, 
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Fig.2 Comparisons between observed histogram and GMM 

 

 
Fig.3 Comparisons between observed histogram and CGM 

 
Fig.4 Comparisons between observed histogram and SCGM 

 
  In addition, parameter α and σ can be evaluated by 
Empirical Character Function (ECF) approach. To access 
the approximation performance of SCGM, we generate 
10000 samples subject to )0,0,(σαS with 1=σ . The 
comparisons between observed histogram and GMM, CGM, 
SCGM are shown in Fig.2~Fig.4 respectively. Fig.3 and 
Fig.4 show that SCGM achieves un-inferior approximation 
than CGM. Meanwhile SCGM has less computational 
burden without EM algorithm. 
 
4. Locally optimum detector 
 
4.1. Problem formulation 
   
  Detection of deterministic direct current signal ( )s i and 

0A >  in additional noise )(in , Ni ,,2,1= can be 
formulated as a hypothesis- testing problem. 

1

0

: ( ) ( ) ( )  
: ( ) ( )     

H x i As i n i
H x i n i

= +
=

                  (12) 

where 1H  is the alternative hypothesis and 0H  is the null 
hypothesis which indicate the presence and nonpresence of 
the signal in the observation, respectively. )(iA represents 
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the detected signal. 
  To decide between the two hypotheses 0H and 1H , the 
optimum receiver computes the test statistic that follows 
from the Neyman-Pearson lemma [2] η 
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f x i

 −Λ =  
 

∑             (13) 

and compares it to a threshold η . When η≥Λ NP , the 
detector decides that signal occurs in the observation, 
otherwise, that only noise occurs. In strong interference 
circumstance, the transmitted signal is quite weak compared 
with interference. In such case, the Locally Optimum (LO) 
detectors [6] are most powerful tool. The log-likelihood test 
for a LO detector is given by 
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where )(xg is the ZMNL function. 
 
4.2. ZMNL 
 
  A standard approach to handing Heavy-tailed noise is to 
pass it through a zero-memory non-linear (ZMNL) limiter. 
Consider the SCGM density )()()1()( xfxfxf CG εε +−= . 
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The ZMNL functions are shown in Fig.5 with respect to 
8.1,6.1,2.1=α and with 1=σ . 

 
Fig.5 The ZMNL functions with respect to 8.1,6.1,2.1=α and 

with 1=σ . 
 

4.3. The Structure of Adaptive Detector 
 
  Based on the above SCGM mixture densities and ZMNL 
limiter, the adaptive deterministic direct current signal 
detector that keeps constant false alarm rate (CFAR) can be 
constructed as shown in Fig.6. For input observation, its 
parameters α andσ are evaluated by ECF method and then 
the mixture ratio ε is obtained by equation (11). With 
certain false alarm ratio (FAR), the corresponding threshold 
value is calculated via SCGM with ε andσ . Due to the 
threshold η concerning with Fisher information that is a 
function with noise parameters α and σ , the presented 
detector is adaptive and keeps CFAR. 

 
Fig.6 The adaptive LO detector structure based on SCGM 

 
5. Experimental results 
   
  Using Monte Carlo simulation, we evaluated the detection 
probability of three detectors, the optimal, SCGM based and 
Cauchy detector. The results are based on 10000 realizations 
of x that is of vector size 20. The corresponding receiver 
operating characteristics (ROCs) shown in Fig.7 and Fig.8 
demonstrate the performance of the detectors in SSα noise 
environment with 1.5α = and 1=σ with respect to 

5.0=A and 2.0=A versus PFA ranging from 0.001 to 0.45. 

 
Fig.7 ROCs for optimal, SCGM and Cauchy detector with A=0.5 
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Fig.8 ROCs for optimal, SCGM and Cauchy detector with A=0.2 

 
  From the results, it is easy to see that the SCGM based 
detector has better performance than Cauchy detector and 
achieved near optimal detection performance. 
 
6. Conclusion 
 
  In this paper, we introduced a new non-Gaussian mixture 
model with bi-parameter for approximation SSα  
interference density. Then, we presented the approach to 
evaluate mixture ratio parameter. Based on such model, we 
deduced the ZMNL function for LO detection. Finally, we 
constructed the adaptive deterministic direct current signal 
detector that keeps CFAR. The simulation results 
demonstrate the detector has near optimal performance and 
superiority to Cauchy detector.  
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